Serum factors alter the extent of dephosphorylation of ligands endocytosed via the mannose 6-phosphate/insulin-like growth factor II receptor
نویسندگان
چکیده
Mouse L-cells that contain the cation-independent (CI) mannose 6-phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor endocytose acid hydrolases and deliver these enzymes to lysosomes. The postendocytic loss of the Man 6-P recognition marker from the cell-associated acid hydrolases was assessed by CI-Man 6-P receptor affinity chromatography. 125I-labeled acid hydrolases internalized by L-cells grown at high density were delivered to lysosomes but were not dephosphorylated. In contrast, the same 125I-labeled hydrolases internalized by L-cells maintained at low density were delivered to lysosomes and were extensively dephosphorylated. The dephosphorylation at low density required 5 h for completion suggesting that the phosphatase responsible for the dephosphorylation is located within the lysosomal compartment. Transition from the high to low density state was rapid and was not inhibited by cycloheximide. Medium substitution experiments indicated that serum factors were necessary to maintain the L-cells in the dephosphorylation-competent (low density) state, and that serum-free conditions led to a dephosphorylation-incompetent (high density) state. Addition of IGF II to cells in serum-free medium allowed acid hydrolases subsequently introduced by endocytosis to be dephosphorylated. The results indicate that the removal of the Man 6-P recognition marker from endocytosed acid hydrolases is regulated by serum factors in the growth medium, including IGF II.
منابع مشابه
Cell- and ligand-specific dephosphorylation of acid hydrolases: evidence that the mannose 6-phosphatase is controlled by compartmentalization
Mouse L cells that possess the cation-independent mannose 6-phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor change the extent to which they dephosphorylate endocytosed acid hydrolases in response to serum (Einstein, R., and C. A. Gabel. 1989. J. Cell Biol. 109:1037-1046). To investigate the mechanism by which dephosphorylation competence is regulated, the dephosphorylation of i...
متن کاملMannose 6-phosphate-containing peptides activate phospholipase C in proximal tubular basolateral membranes from canine kidney.
To ascertain whether mannose 6-phosphate-containing peptides that bind to the insulin-like growth factor II (IGF II)/mannose 6-phosphate receptor activate phospholipase C, we determined the effect of proliferin, transforming growth factor-beta 1 (TGF-beta 1) precursor, and beta-galactosidase on production of inositol trisphosphate (Ins-P3) in basolateral membranes isolated from the renal proxim...
متن کاملEffects of brefeldin A on the endocytic route. Redistribution of mannose 6-phosphate/insulin-like growth factor II receptors to the cell surface.
The effect of brefeldin A (BFA) on the trafficking of the mannose 6-phosphate/insulin-like growth factor II receptor within the endocytic route was analyzed. Treatment with BFA induced a redistribution of the receptor to the cell surface and increased both the binding and internalization of ligands 2-4-fold. The effect of BFA was dose- and time-dependent and reversible. Determinations of transp...
متن کاملMannose 6-phosphate/insulin-like growth factor II-binding proteins in human serum and urine. Their relation to the mannose 6-phosphate/insulin-like growth factor II receptor.
Human serum and urine contain polypeptides which bind mannose 6-phosphate (M6P) and insulin-like growth factor II (IGF II) and crossreact with antibodies against the M6P/IGF II receptor. These polypeptides are considered to be fragments of the M6P/IGF II receptor. The major Mr approx. 205,000 fragment in serum and urine is about 10 kDa smaller in size than the membrane-associated receptor and i...
متن کاملRegulation of the mannose 6-phosphate/IGF II receptor expression at the cell surface by mannose 6-phosphate, insulin like growth factors and epidermal growth factor.
Mannose 6-phosphate, insulin like growth factors I and II (IGF I, IGF II), insulin and epidermal growth factor (EGF) induce a 1.5- to 2-fold increase of mannose 6-phosphate binding sites at the cell surface of human skin fibroblasts. The increase is completed within 10-15 min, is dose and temperature dependent, reversible and transient even in the presence of the effectors. It is due to a redis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 109 شماره
صفحات -
تاریخ انتشار 1989